Effect of protein binding on the pharmacological activity of highly bound antibiotics.
نویسندگان
چکیده
During antibiotic drug development, media are frequently spiked with either serum/plasma or protein supplements to evaluate the effect of protein binding. Usually, previously reported serum or plasma protein binding values are applied in the analysis. The aim of this study was to evaluate this approach by experimentally measuring free, unbound concentrations for antibiotics with reportedly high protein binding and their corresponding antimicrobial activities in media containing commonly used protein supplements. Free, unbound ceftriaxone and ertapenem concentrations were determined in bacterial growth medium with and without bovine/human serum albumin, as well as adult bovine serum and human plasma using in vitro microdialysis. The corresponding antimicrobial activity was determined in MIC and time-kill curve experiments using Escherichia coli ATCC 25922 and Streptococcus pneumoniae ATCC 6303 as test strains. A semimechanistic maximum effect model was simultaneously fitted to the data and respective EC(50) (concentration at half-maximum effect) values compared. Protein binding differed significantly for ceftriaxone (P < 0.05) between human plasma (76.8 +/- 11.0%) and commercially available bovine (20.2 +/- 8.3%) or human serum albumin (56.9 +/- 16.6%). Similar results were obtained for ertapenem (human plasma, 73.8 +/- 11.6%; bovine serum albumin, 12.4 +/- 4.8%; human serum albumin, 17.8 +/- 11.5%). The MICs and EC(50)s of both strains were significantly increased (P < 0.05) for ceftriaxone when comparing human and bovine serum albumin, whereas the EC(50)s were not significantly different for ertapenem. Free, unbound antibiotic concentrations differed substantially between plasma and protein supplements and correlated well with antimicrobial efficacy. Therefore, free, active concentrations should be measured in the test system instead of correcting for literature protein binding values.
منابع مشابه
In Vitro Cytotoxic Activity and Binding Properties of Curcumin in the Presence of β-Casein Micelle Nanoparticles
Curcumin (CUR) is the active curcuminoid with many physiological, biochemical, and pharmacological properties. Solubility and stability of CUR is the limiting factors for realizing its therapeutic potential. Bovine β-casein is an abundant milk protein that is highly amphiphilic and self-assembles into stable micellar nanoparticles in aqueous solution. β-Casein nanoparticle can solubilize CUR mo...
متن کاملRate of binding of antibiotics to canine serum protein.
The time rates of binding of three antibiotics of similar chemical structure, each with differing degrees of protein binding, were determined. Cephaloridine, which is 10% bound by serum proteins, was bound at a more rapid rate than cephalothin, which is 40% bound by serum protein. Cefazolin, bound 80%, required for longest time period for maximum binding to occur. The rate of protein binding ap...
متن کاملEffect of Amino Acid Substitutions on Biological Activity of Antimicrobial Peptide: Design, Recombinant Production, and Biological Activity
Recently, antimicrobial peptides have been introduced as potent antibiotics with a wide rangeof antimicrobial activities. They have also exhibited other biological activities, including antiinflammatory,growth stimulating, and anti-cancer activities. In this study, an analog of MagaininII was designed and produced as a recombinant fusion protein. The designed sequence containe...
متن کاملEffect of Amino Acid Substitutions on Biological Activity of Antimicrobial Peptide: Design, Recombinant Production, and Biological Activity
Recently, antimicrobial peptides have been introduced as potent antibiotics with a wide rangeof antimicrobial activities. They have also exhibited other biological activities, including antiinflammatory,growth stimulating, and anti-cancer activities. In this study, an analog of MagaininII was designed and produced as a recombinant fusion protein. The designed sequence containe...
متن کاملDocking and Biological Screening of Bezo[A]phenothiazinones as Novel Inhibitors of Bacterial Peptidogloycan Transpeptidase
Rising cases of antibiotic-resistant bacteria is a public health concern. Many approved antibiotics target penicillin-binding proteins example peptidoglycan transpeptidase (PTPase). Due to wide pharmacological activity of phenothiazines, new styryl, aryl, alkynyl, and thiophenyl benzo[a]phenothiazines were synthesized and their inhibitory potency against PTPasein silico and Gram-po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 52 11 شماره
صفحات -
تاریخ انتشار 2008